免费咨询热线:

16637339121

辉县市伟业石墨制品有限公司

——

新闻资讯

——
石墨模具图纸工艺

26

2023-08
石墨模具图纸工艺
  首先它由模具设计人员根据产品(零件)的使用要求,把石墨模具结构设计出来,绘出图纸再由技术工人按图纸要求通过各种机械的加工(如车床、刨床、铣床、磨床、电火花、线切割等各种设备)做好模具上的每个零件,然后组装调试,直到能生产出合格的的产品。  低速走丝线切割机电极丝以铜线作为工具电极,一般以低于0.2mm/s的速度作单向运动,在铜线与铜、钢或超硬合金等被加工物材料之间施加60~300V的脉冲电压,并保持5~50um间隙,间隙中充满脱离子水(接近蒸馏水)等绝缘介质,使电极与被加工物之间发生火花放电,并彼此被消耗、腐蚀,在工件表面上电蚀出无数的小坑,通过NC控制的监测和管控,伺服机构执行,使这种放电现象均匀一致,从而达到加工物被加工,使之成为合乎要求之尺寸大小及形状精度的产品。精度可达0.001mm级,表面质量也接近磨削水平。电极丝放电后不再使用,而且采用无电阻防电解电源,一般均带有自动穿丝和恒张力装置。工作平稳、均匀、抖动小、加工精度高、表面质量好,但不宜加工大厚度工件。由于机床结构精密,技术含量高,机床价格高,因此使用成本也高。  加工余量和火花间隙。  1. 零件开粗时余量一般应不小于0.5mm,半精加工余量介于0.15-0.25mm之间,精加工时分型面一定要精铣到数,料位面一定要刀路均匀,擦穿位¸小碰穿位留0.05~0.1mm余量。  2. 电极火花位,暴工一般为0.7~1.0mm,粗工一般为0.3-0.5mm,精工一般为0.1-0.15mm。
—— read more
石墨模具质量的优劣差异

15

2023-08
石墨模具质量的优劣差异
  1.材料的平均颗粒直径  物料的平均粒径直接影响物料的出料状况。材料的平均颗粒越小,材料的放电越均匀,放电条件越稳定,表面质量越好。  对于表面和精度要求不高的锻造和压铸模具,通常推荐使用颗粒较粗的材料,如ISEM-3。对于表面和精度要求较高的电子模具,建议使用平均粒度在4μm以下的材料,以保证加工模具的精度和表面光洁度。材料的平均颗粒越小,材料的损耗越小,离子群之间的作用力越大。例如,通常推荐ISEM-7来满足精密压铸和锻造模具的要求。但当客户对精度要求较高时,推荐使用TTK-50或ISO-63材料,以保证材料损耗较少,从而保证模具的精度和表面粗糙度。同时,颗粒越大,出料速度越快,粗加工损失越小。主要原因是放电过程中电流强度不同,导致放电能量不同。但放电后的表面光洁度也随着颗粒的变化而变化。  2.材料的固有电阻率  根据我们对材料特性的统计,如果材料平均颗粒相同,电阻率高的放电速率会比电阻率低的慢。对于平均粒径相同的材料,电阻率低的材料强度和硬度会略低于电阻率高的材料。也就是放电速度和损耗会不一样。因此,根据实际应用选择材料是非常重要的。由于粉末冶金的特殊性,每批材料的各项参数都有其代表值,并有一定的波动范围。而同等级的石墨材料放电效果非常接近,各种参数造成的应用效果差异很小。材料石墨电极材料的选择直接关系到放电效果。材料选择是否合适,很大程度上决定了放电速度、加工精度和表面粗糙度。掌握以上几点,对辨别石墨材料的等级会有很大的作用。  3.材料的弯曲强度  材料的抗弯强度是材料强度的直接体现,表现了材料内部结构的致密性。强度高的材料放电电阻相对较好,石墨制品对于精度要求高的电极,尽量选择强度较好的材料。比如TTK-4可以满足一般电子连接器模具的要求,但是一些有特殊精度要求的电子连接器模具可以采用TTK-5材料,同样的粒度,但是强度略高。  4.材料的肖氏硬度  在对石墨的潜意识理解中,石墨一般被认为是一种比较柔软的材料。但实际测试数据和应用表明,石墨的硬度高于金属材料。在特种石墨行业,一般的硬度测试标准是肖氏硬度测量,其测试原理与金属不同。由于其层状结构,石墨在切削过程中具有优异的切削性能。其切削力仅为铜的1/3左右,加工表面易于处理。但由于其硬度高,切削刀具的损耗会略大于切削金属刀具。同时,高硬度的材料对放电损耗有很好的控制。在我公司的EDM材料体系中,有两种材料可供选择,一种硬度略高,另一种硬度略低,以满足不同要求的客户的需求。比如平均粒径为5μm的材料有ISO-63、TTK-50;;平均粒径为4μm的材料有TTK-4和TTK-5;平均粒径为2μm的材料包括TTK-8和TTK-9。主要是考虑到各类客户对放电和加工的侧重。
—— read more
大型石墨件加工注意事项

08

2023-08
大型石墨件加工注意事项
 一、数控机床加工中应注意的问题。  1、当工件高度过高时,可以选择使用不同长度的刀片将余料除去。  2、用平底刀加工平面,可有效地减少加工时间;如果有倾斜度,而且是一个整数,则应用倾斜度刀具加工。  3、石墨材料硬度高时应选择反铣加工;石墨材料硬度低时应选择顺铣加工;精加工采用反铣加工,精加工采用顺铣加工。  4、切割器韧性好,硬度低,适合粗加工;韧性差,硬度高,适合精加工。  二、是石墨制品*件夹具及夹具的选型问题。  1、对石墨制品*件加工的装夹方法,应合理选择定位基准及装夹方案。在选择基准的时候,要遵循“基准的统一性”和“基准的重合性”两个原则。  2、所有表面加工尽量用一次定位夹具完成,为了加工工件的各表面,必须选择定位方式。  3、确定工作台上石墨制品工件的位置时,必须考虑各个位置的加工方法、工具长度和刚度对加工质量的影响。  4、加工石墨制品所用的夹具,应尽可能选用通用*件装配,并可调节的夹具,可有效地缩短生产准备周期。  三、安排石墨制品加工顺序应注意的事项。  1、安排石墨制品加工顺序,应遵循“面后孔”和“面后粗、精”的基本原则。  2、确定好刀点和换刀点,一旦确定,就不适合更换。  3、按刀具集中工序加工,可较好地避免重复使用同一把刀具,减少了更换刀具的次数和时间。  4、对于同轴度要求较高的孔系统,应在一次定位后加工所有孔系统,然后在其他孔系统坐标位置加工,有效消除重复定位造成的误差,提高孔系统的同轴度。
—— read more
高性能石墨高速铣削加工研究

25

2023-07
高性能石墨高速铣削加工研究
 高性能石墨作为电极材料,具有强度高、电极消耗小、加工速度快、热变形小和加工温度高等优点,在我国汽车、家电、通信和电子等行业制品的模具电火花加工制造中应用日益广泛,尤其在薄壁或微细电极制造和应用方面具有铜电极无法比拟的优势。硬质合金微铣刀高速铣削技术是实现薄壁或微细石墨电极高精度加工的主要手段,但是由于缺乏石墨高速铣削机理、刀具磨损机理以及高速铣削工艺优化等方面的深入研究,实际生产中尚存在很多问题,不能充分发挥高速铣削的优越性。本文根据模具制造业对石墨高速铣削技术的迫切需要,着重从高速铣削切屑形成机理、刀具磨损机理、表面质量、切削力以及典型薄壁结构石墨电极工艺参数优化和编程策略优选等方面对石墨高速铣削加工进行了系统深入的理论和实验研究,并通过典型薄壁结构石墨电极高速铣削加工实例验证了研究成果的合理性和实用性.   在石墨高速铣削切屑形成机理研究方面,采用在线摄影法和材料微观分析技术,分别通过石墨正交切削和高速铣削研究,分析了石墨切屑形成过程的基本特征;结合高速铣削微铣刀的单齿极限切削厚度与进给量和径向切深的几何关系,首先建立了高速铣削加工条件与石墨切屑形态、切屑粒度分布、已加工表面形貌、表面破碎率和表面粗糙度的关系;分析了切屑形成过程与切削力特征和刀具磨损的关系,提出了石墨高速铣削机理模型。研究结果表明:在石墨高速铣削过程中,随着单齿极限切削厚度的增加,石墨切屑由以准连续切屑为主逐渐向以挤压颗粒切屑为主和以断裂块屑为主转变;每齿进给量和径向切深通过影响单齿极限切削厚度来改变石墨高速铣削的切屑形成过程,降低每齿进给量和径向切深以及采用逆铣加工可减小石墨表面破碎率;增大切削速度对石墨高速铣削的切屑形成过程的影响较小;采用正前角切削更容易形成大块断裂块屑,后角和螺旋角对石墨切屑形成过程的影响较小:切削力波形随石墨切屑形成方式的变化而变化。采用图像处理法计算表面破碎率,不仅作为石墨已加工表面质量的评价指标,而且作为系统研究石墨高速铣削机理、切削力和刀具磨损的重要研究手段,将其有机地应用于本文的相关研究中。   在石墨高速铣削切削力研究方面,结合切削条件变化对石墨高速铣削切屑形成过程、表面破碎率以及后刀面与工件表面的摩擦因数等因素的影响,研究了切削参数、刀具几何角度和石墨材料性能对石墨高速铣削切削力的影响,分析了切削力的时域波形特征和频域分量随刀具磨损的变化趋势,提出了减小切削力的高速铣削工艺参数的基本选择原则。通过基于田口方法的正交实验设计,找出了影响石墨高速铣削切削力的主要因素.获得了以切削力为优化目标的工艺参数极优水平组合。在石墨/硬质合金副的摩擦磨损特性方面,通过采用标准盘销式摩擦实验机进行滑动摩擦磨损实验,以及采用改进型盘销式摩擦磨损实验装置进行磨粒磨损实验,模拟石墨高速铣削时切屑和工件材料与硬质合金刀具表面之间的摩擦磨损特性,研究了石墨/硬质合金副的滑动摩擦磨损行为和磨粒磨损行为,为研究石墨高速铣削的刀具磨损机理提供了摩擦学理论基础。   (1)在石墨,硬质合金副的滑动摩擦磨损特性方面,研究了滑动摩擦磨损过程中法向载荷和滑动速度与摩擦副表面特征、摩擦因数和摩擦温度的关系,研究结果表明:硬质合金销表面在摩擦过程中形成了石墨转移膜:硬质合金销的磨损表面具有“抛光”磨粒磨损特征:提高法向载荷和滑动速度,可促进转移膜的形成,并降低摩擦因数和摩擦温度。   (2)在石墨/硬质合金副的磨粒磨损特性方面,研究了磨粒磨损过程中WC晶粒度、Co含量、法向载荷、滑动速度和涂层对摩擦副的表面显微形貌、比磨损率和摩擦因数的影响,研究结果表明:硬质合金的磨损表面具有“抛光”磨粒磨损和“微切削”磨粒磨损特征;硬质合金的比磨损率和摩擦因数随WC晶粒度和Co含量的减小而显著降低,随法向载荷增大而增大,但受滑动速度的影响较小;AITiN涂层对石墨高速铣削用硬质合金微铣刀具有抗磨减摩作用,但并不十分显著。(3)通过在摩擦副接触表面上添加石墨切屑,研究了石墨切屑对摩擦副滑动摩擦磨损特性的影响,研究结果表明:石墨切屑可减小摩擦因数和摩擦温度,并使摩擦因数随着法向载荷减小和滑动速度提高而降低。在硬质合金微铣刀高速铣削石墨的刀具磨损和破损研究方面,分析了石墨高速铣削过程中的摩擦学条件,揭示了涂层和非涂层硬质合金微铣刀高速铣削石墨的刀具磨损和破损形态及其机理,研究结果表明涂层早期剥落是涂层的早期破损形式,“抛光”磨粒磨损是涂层硬质合金微铣刀在稳定磨损期的主要磨损机理。研究了WC晶粒度和Co含量对硬质合金微铣刀高速铣削石墨的耐磨粒磨损性和抗冲击性的影响,结果表明硬质合金微铣刀的耐磨粒磨损性随着wC晶粒度和co含量减小而显著提高,但Co含量太少时,又使得硬质合金微铣刀的抗冲击性出现显著下降;7超细晶粒硬质合金O.2ttmWC--8%Co是适合于石墨高速铣削的硬质合金基体材料,为涂层硬质合金微铣刀基体材料优选提供了依据。结合切削条件变化对石墨高速铣削切屑形成过程、表面破碎率以及后刀面与工件表面的摩擦因数等因素的影响,研究了切削参数、刀具几何角度和石墨材料性能对刀具磨损的影响,提出减小刀具磨损的工艺参数优化策略;提出了减小刀具磨损的高速铣削工艺参数的基本策略。通过基于田口方法的正交实验设计,找出了影响石墨高速铣削刀具磨损的主要因素,获得了以实现至小刀具磨损为优化目标的工艺参数极优水平组合。在典型薄壁结构石墨电极的高速铣削工艺研究方面,综合运用全文的研究结果,针对典型薄壁结构石墨电极高速铣削的工艺特点,制定和优选了适用于典型薄壁结构石墨电极高速铣削的粗加工、半精加工和精加工编程策略、加工工艺、工艺参数和加工刀具,并对一个典型薄壁结构石墨电极的高速铣削加工实例,制定了高速铣削加工工艺,编制了CNC高速加工程序,成功地实现了厚度0.3ram、厚高比为l:53_3的薄壁石墨电极的低成本高质量率的高速铣削加工,表面粗糙度Ra仅为0,17ttm。 
—— read more
12...56789...1213 共124条 13页,到第 确定
在线咨询

微信咨询详情

版权所有 辉县市伟业石墨制品有限公司 备案号:豫ICP备2022023577号-1